IMRPhenomD_NRT
Functions
-
double tidal_error(double tidal_s, double tidal_a, double q)
-
adouble tidal_error(adouble tidal_s, adouble tidal_a, adouble q)
Variables
-
const double n_NRT[5] = {-12.615214237993088, 19.0537346970349, -21.166863146081035, 90.55082156324926, -60.25357801943598}
Numerically calibrated coefficients of Pade approximant (PNRTidal_v2) from arXiv:1905.06011 equations 19, 20, and 21.
-
const double d_NRT[3] = {-15.111207827736678, 22.195327350624694, 8.064109635305156}
-
const double n_binLove = 0.743
Numerically calibrated coefficients of binary love relations from arXiv:1903.03909 equations 11, 12, and 13.
-
const double b_binLove[3][2] = {{-14.40, 14.45}, {31.36, -32.25}, {-22.44, 20.35}}
-
const double c_binLove[3][2] = {{-15.25, 15.37}, {37.33, -43.20}, {-29.93, 35.18}}
-
const double mu_binLove[5] = {3.509 * pow(10, -3.), 9.351 * pow(10, -1.), -18.07, 27.56, -10.10}
Numerically calibrated coefficients for error marginalization over residual EoS dependence of binary love relations from arXiv:1903.03909 table V. These coefficients are used in equations 19-22 of that paper.
-
const double sigma_binLove[9] = {-2.074 * pow(10, -7.), 1.492 * pow(10, -3.), -4.891 * pow(10, -2.), 8.207 * pow(10, -1.), -1.308, -63.76, 11.14, 75.25, -23.69}
-
const double bL_error[18] = {-12.9277, 24.3532, -11.4391, 1.14402 * pow(10, -2.), -7.91351 * pow(10, -3.), -3.40364 * pow(10, -3.), -1.50512 * pow(10, -7.), 15.4219, -46.1750, 56.3086, -25.0453, 3.49200 * pow(10, -8.), -1.85544 * pow(10, -4.), 6.17533 * pow(10, -2.), -4.65122, 11.1415, -6.59985, -5.40616 * pow(10, -2.)}
-
template<class T>
class IMRPhenomD_NRT : public IMRPhenomD<T> - #include <IMRPhenomD_NRT.h>
Class that extends the IMRPhenomD waveform to include tidal effects in the inspiral portion of the phase.
Subclassed by EA_IMRPhenomD_NRT< T >, ppE_IMRPhenomD_NRT_Inspiral< T >
Public Functions
-
virtual T Pade(T f, source_parameters<T> *param, useful_powers<T> *powers, char deriv)
-
virtual T phase_ins_NRT(T f, useful_powers<T> *powers, source_parameters<T> *param)
-
virtual T phase_ins_NRT_D(T f, useful_powers<T> *powers, source_parameters<T> *param)
-
virtual T phase_spin_NRT(T f, useful_powers<T> *powers, source_parameters<T> *param)
-
virtual T amp_ins_NRT(T f, useful_powers<T> *powers, source_parameters<T> *param)
-
virtual int construct_waveform(T *frequencies, int length, std::complex<T> *waveform, source_parameters<T> *params)
Constructs the waveform as outlined by.
arguments: array of frequencies, length of that array, a complex array for the output waveform, and a source_parameters structure
- Parameters:
frequencies – T array of frequencies the waveform is to be evaluated at
length – integer length of the array of frequencies and the waveform
waveform – complex T array for the waveform to be output
-
virtual T taper(T f, int length, source_parameters<T> *params)
-
virtual void assign_static_pn_phase_coeff(source_parameters<T> *source_param, T *coeff)
Calculates the static PN coeffecients for the phase - coeffecients 0,1,2,3,4,7.
-
virtual void calculate_spin_coefficients_3p5(source_parameters<T> *param)
-
virtual T calculate_NRT_amp_coefficient(source_parameters<T> *param)
-
virtual void binary_love_relation(T tidal_s, bool tidal_love_error, source_parameters<T> *sp)
-
virtual T Pade(T f, source_parameters<T> *param, useful_powers<T> *powers, char deriv)